翻訳と辞書
Words near each other
・ Powerboat (disambiguation)
・ Powerboat training nz
・ Powerboating
・ Powerbocking
・ Powerbomb
・ PowerBook
・ PowerBook 100
・ PowerBook 100 series
・ PowerBook 140
・ Power sum symmetric polynomial
・ Power Summit
・ Power supply
・ Power Supply (album)
・ Power Supply (EP)
・ Power supply rejection ratio
Power supply unit (computer)
・ Power surge
・ Power Surge (ride)
・ Power Surge (water ride)
・ Power symbol
・ Power Symphony
・ Power System Operation Corporation
・ Power system simulation
・ Power system simulator for engineering
・ Power systems CAD
・ Power Tab Editor
・ Power take-off
・ Power Team
・ Power theory of economics
・ Power therapies


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Power supply unit (computer) : ウィキペディア英語版
Power supply unit (computer)

A power supply unit (PSU) converts mains AC to low-voltage regulated DC power for the internal components of a computer. Modern personal computers universally use a switched-mode power supply. Some power supplies have a manual selector for input voltage, while others automatically adapt to the supply voltage.
Most modern desktop personal computer power supplies conform to the ATX specification, which includes form factor and voltage tolerances. While an ATX power supply is connected to the mains supply, it always provides a 5 V standby (5VSB) voltage so that the standby functions on the computer and certain peripherals are powered. ATX power supplies are turned on and off by a signal from the motherboard. They also provide a signal to the motherboard to indicate when the DC voltages are in spec, so that the computer is able to safely power up and boot. The most recent ATX PSU standard is version 2.31 of mid-2008.
==Functions==

The desktop computer power supply changes alternating current from a wall socket to low-voltage direct current to operate the processor and peripheral devices. Several direct-current voltages are required, and they must be regulated with some accuracy to provide stable operation of the computer. A ''power supply rail'' or voltage rail refers to a single voltage provided by a power supply unit (PSU). Although the term is generally used in electronic engineering, many people, especially computer enthusiasts, encounter it in the context of personal computer power supplies.
First-generation microcomputer and home computer power supply units used a heavy step-down transformer and a linear power supply. Modern computers use switched-mode power supplies (SMPS) with a ferrite-cored high frequency transformer. The switched-mode supply is much lighter and less costly, and is more efficient, than an equivalent linear power supply.
Computer power supplies may have short circuit protection, overpower (overload) protection, overvoltage protection, undervoltage protection, overcurrent protection, and over temperature protection.
Recent power supplies have a standby voltage available, to allow most of the computer system to be powered off. When the computer is powered down but the power supply is still on, it can be started remotely via Wake-on-LAN and Wake-on-ring or locally via Keyboard Power ON (KBPO) if the motherboard supports it.
This standby voltage is generated by a smaller power supply inside the unit. In older PSU designs, it was used to supply the voltage regulator, located on the low-voltage side of the transformer, allowing the regulator to measure output voltages. The regulator controls the switching transistors insulated by optocoupplers or pulse transfomers. The standby power source was a small linear power supply with conventional transformer, which was later changed to a switching power supply, sharing some components of the main unit due to cost- and energy-saving requirements.
Power supplies designed for worldwide use were equipped with an input voltage selector switch that allowed the user to configure the unit for use on local power grid. In the lower voltage range, around 115 V, this switch is turned on changing the power grid voltage rectifier into a voltage doubler in delon circuit design. As a result, the large primary filter capacitor behind that rectifier was split up into two capacitors wired in series, balanced with bleeder resistors and varistors that were necessary in the upper input voltage range, around 230 V. Connecting the unit configured for the lower range to a higher-voltage grid usually resulted in an immediate permanent damage. When the power factor correction (PFC) was required, those filter capacitors were replaced with higher-capacity ones, together with a coil installed in series to delay the inrush current. This is the simple design of a passive PFC.
Active PFC is more complex and can achieve higher PF, up to 99%. The first active PFC circuits just delayed the inrush. Newer ones are working as an input and output condition-controlled step-up converter, supplying a single 400 V filter capacitor from a wide-range input source, usually between 80 and 240 V. Newer PFC circuits also replace the NTC-based inrush current limiter, which is an expensive part previously located next to the fuse.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Power supply unit (computer)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.